Kansei evaluation analysis toward constructing human-machine interface based on Gaze Catching System for real life

Chiu-Yi Lee, Toshimasa Yamanaka

juyilee@kansei.tsukuba.ac.jp tyam@geijutsu.tsukuba.ac.jp

Abstract: In this paper, an interface was developed which used in a virtual space model to test that if the human-machine interface based on the Gaze Catching System can apply to human life. This interface was constructed by an indoor room image containing 3 changing light spots. The 3 changing light spots would change their color from red to green by the times user looking at it, but in different participants groups the changing response time are different. This research was targeted to clarify what kind of impression that people have when having a gaze interaction in an indoor room space, and also how the response time influences participants' impressions of the interaction system. The psychological methods, the semantic differential method (SD), and statistical analysis was employed in this research. From the results of the experiment, response time was not seen to have effect on gaze interaction, while Awareness of gaze interaction would bring more humanlike impression.

Key words: Kansei evaluation, eye- tracking, gaze-tracking, interaction, response time

1. Introduction

Recently, new technology has been studied and developed, and our life is deeply involved with machines. Concerning on the situation that we're getting more rely on machines, the relationship between human and machine is not just limited to that people order machines one sided, but a new relationship is necessary to be constructed.

Thinking of human-human communication, "eye contact" is a characteristic communication that people have. People have eye contact pretty often. However, only human or animals would be able to take reaction to others' gaze. What if machines have reaction to people's gaze? And how does it affect the interaction between human and machine? The question of this research is arisen from these experiences of human gaze. In this research we targeted on profiling the human gaze movement to construct a new kind of "gaze interaction" between human and machine.

Eye-gaze tracking has a potential to greatly influence the way that we interact with machines as a new form of human-machine interface.[1] Recent advances in electronics and computing technology have made possible non-contact and real-time video based eye-gaze tracking systems. To be acceptable to the general population, eye-gaze tracking systems should be non-contact, non-restrictive, sufficiently accurate for the user's range of tasks, easy to set up and simple to use. This non-contact eye-gaze tracking system must be a powerful tool to construct the new human-machine interface system.

In this research, a Gaze Catching System was developed, and by adding the new interfaces to the system, we

aimed to clarify which factors are needed for the kansei evaluation of gaze interaction. SD method [2] was used for the evaluation. we evaluated the Gaze Catching System using a virtual room. T-test and ANOVA were applied in this experiment to tell if response time or awareness has effect on the kansei evaluation of gaze interaction. This presenting study is considered to be an out of ordinary research in the studies of gaze interaction.

2. Gaze Catching System

This Gaze Catching System contains two parts, the gaze tracking part and the interface part. The gaze tracking part is devised based on the open source code "TrackEye : Real-Time Tracking Of Human Eyes Using a Webcam", which is written by Zafer Savas, and licensed under The Code Project Open License (CPOL)[3, 4]. This source code is able to detect the position of eyes and pupils with simple devices, and we use this function to construct gaze detection.

For the expectation to apply the gaze interaction system to real life space, we constructed a virtual space as the interface part. To make a virtual space, we introduced Elumens Vision Station into our experiment (see Figure.1). The Vision Station is able to transform 2-D computer graphics into 3-D sensory encounters that can provide a more immersive and realistic experience by providing peripheral images to its user.

Figure.1 Elumens Vision Station

In this experiment, we use an indoor room image as the background of the interface, and 3 changing light spots were added on the electrical objects in the room. These 3 changing light spots would change its color from red to green with people's gaze (see Figure.2). The electrical projects were chosen to put on the changing light spots because they are machines we often use in our life, and also electrical projects often have lights as their switch signals. The colors of the light spots, red and green, are also chosen from the common colors of switch signals. We'd want to simulate the situation that when people look at the electrical project it will react specifically on the position where people look, but since the limit of accuracy of the tracking gaze program, we set up the sense areas (as the blue dotted line showed in Figure.2) as the substitutes of electrical objects, and the light spots were at the center of the area.

Figure.2 The changing light spots would change color when detecting gaze.

3. Experiment

3.1 Response time of gaze interaction

The system response time is a very important factor in the interaction with machine. There were many previous studies doing the research about the response time of computers [5] [6], and how it effects on people. However, the response time of gaze interaction is not studied much.

In this experiment, we found a previous research about the response time of computer and people as consultation. In the study of graphic response from light pen, it shows that where the lines are drawn with deliberation by the users, a delay of up to 0.1 second seems to be acceptable [5]. And in other study of the effects of Internet delays on users, it shows that the delay time before the task appeared is considered to be short as about 0.4 seconds [6]. So according to previous studies, we set the response times in this experiment as 100ms, 300ms, and 600ms. The participants are also separated to 3 groups corresponding to the 3 sets of response time. We're going to find out the effect of response time on gaze interaction.

3.2 Participants

The participants in our experiment were 30 students of University of Tsukuba. They are ranged in age from 20 to 30 years old. All participants are Japanese including 18 males and 12 females, and they are separated to 3 groups as below.

- a) Group 100 ms : 7 men, 3 women
- b) Group 300 ms : 6 men, 4 women
- c) Group 600 ms : 5 men, 5 women

3.3 Condition

Participants were asked to sit in front of the Elumens Vision Station to watch the interactive stimuli about 3 minutes. While they were watching, the gaze tracking began to work, and the red light spot on the interface would change to green color when participants looked at the area.

At the end of the experiment, the participant was asked to answer questionnaires for ratings the experience of gaze interaction by the SD (Semantic Differential) method. The questionnaire consisted of 20 adjective pairs shown in Table 1 in order to analyze the impressions of each participant. Also the questionnaire is appended a question to ask if the participants were aware of the gaze interaction.

4. Results

4.1 Results of Questionnaires

Table 1 shows the results of the ratings. The adjective pairs in the table are translated from Japanese words used in the questionnaires. The mean values and the standard deviation values are the result of the 30 participants separating to 3 groups (100ms, 300ms, 600ms). The ratings are based on the 1-to-5 scales, where 1 means fitted positive adjectives very well (adjectives in the leftmost-column in the Table 1).

A diactive Daire		Mean		S.D.			
Aujective Pairs	100ms	300ms	600ms	100ms	300ms	600ms	
Kind — Cruel	2.1	1.9	2.6	1.10	0.74	1.07	
Favorable — Unfavorable	2	2.7	2.7	0.67	0.82	0.95	
Friendly — Unfriendly	2.5	3.1	2.9	1.35	0.99	0.99	
Safe — Dangerous	2	1.5	1.9	1.05	0.71	0.99	
Pretty — Ugly	2.7	2.9	3	0.67	0.57	0.47	
Distinct — Vague	2.9	3.2	3.1	1.20	1.23	1.10	
Accessible — Inaccessible	2.4	2.7	2.7	0.84	0.95	0.82	
Altruistic — Selfish	2.5	3	2.6	0.71	0.67	0.52	
Humanlike — Mechanical	2.9	3.5	3.2	1.10	0.97	0.92	
Full — Empty	3	3.5	3.1	0.82	0.97	0.74	
Interesting — Boring	2	2.5	2.1	1.05	1.27	0.99	
Happy — Unhappy	2.4	2.8	3	0.84	0.79	0.67	
Likable — Dislikable	2.4	2.8	2.7	0.97	1.23	0.82	
Exciting — Dull	1.9	2.3	1.7	0.99	1.34	0.67	
Good — Bad	2.3	2.4	2.2	0.67	1.07	0.63	
Complex — Simple	3.2	3.5	3.3	0.92	1.08	0.82	
Rapid — Slow	3	3	2.6	0.94	0.82	0.97	
Active — Passive	3	3.2	3.1	0.67	0.92	0.57	
Showy — Quiet	3.6	3.9	3.6	0.70	0.74	0.52	
Sharp — Blunt	3.1	2.9	2.7	0.74	0.57	0.82	

Table 1 Evaluated adjective pairs and the results

4.2 Gender effect analysis

In this section, we're doing an analysis of gender effect. There might be many factors that cause gender differences in the evaluation, including the different preferences for the background indoor room image or the environment of the experiment. Table 2 shows the result of the analysis.

An Independent-samples t-test was conducted to compare the scores of adjective pairs for males and females. There were statistically significant differences at the p < .05 level in the scores of two adjective pairs, "Happy - Unhappy" and "Complex - Simple". The significant difference in the scores of "Happy - Unhappy" for male (M = 2.50, SD = 0.86) and female (M = 3.08, SD = 0.51), t (28) = -2.109, p = 0.044 (two-tailed). The significant difference in the scores of "Complex - Simple" for male (M = 3.06, SD = 0.94) and female (M = 3.75, SD = 0.75), t (28) = -2.142, p = 0.041 (two-tailed).

According to results above, most of the adjective pairs are not affected by gender, except the adjective pairs, "Happy - Unhappy" and "Complex - Simple". In this research, we don't want to consider the effect caused by gender on gaze interaction. Thus we will exclude the two adjective pairs in the following analysis.

	Group Statistics				Independent Samples Test						
						Levene's Equal	s Test for lity of				
A 11				C(1	Equal	Varia	ances	t-test for	Equality	of Means	
Adjective Pairs	Sex	N	Mean	Std. Deviation	assumed	F	Sig.	t	df	Sig. (2-tailed)	
Kind –	male	18	2.1111	1.07861	true	1.031	.319	592	28	.559	
Cruel	female	12	2.3333	.88763	False			616	26.623	.543	
Favorable –	male	18	2.4444	.92178	True	.477	.496	170	28	.866	
Unfavorable	female	12	2.5000	.79772	False			175	25.979	.862	
Friendly –	male	18	2.7222	1.17851	true	1.460	.237	661	28	.514	
Unfriendly	female	12	3.0000	1.04447	False			678	25.644	.504	
Safe –	male	18	1.8333	.98518	True	1.157	.291	.238	28	.814	
Dangerous	female	12	1.7500	.86603	False			.244	25.761	.809	
Pretty –	male	18	2.7778	.64676	True	6.337	.018	-1.045	28	.305	
Ugly	female	12	3.0000	.42640	False			-1.134	28.000	.266	
Distinct –	male	18	2.9444	1.21133	True	.031	.863	711	28	.483	
Vague	female	12	3.2500	1.05529	False			732	25.888	.471	
Accessible –	male	18	2.3889	.84984	True	.253	.619	-1.710	28	.098	
Inaccessible	female	12	2.9167	.79296	False			-1.735	24.863	.095	
Altruistic –	male	18	2.6667	.68599	True	.168	.685	338	28	.738	
Selfish	female	12	2.7500	.62158	False			345	25.316	.733	
Humanlike –	male	18	3.4444	1.04162	True	.555	.462	1.698	28	.101	
Mechanical	female	12	2.8333	.83485	False			1.776	26.919	.087	
Full –	male	18	3.3889	.91644	True	2.365	.135	1.530	28	.137	
Empty	female	12	2.9167	.66856	False			1.630	27.697	.114	

Table 2 The result of independent-samples t-test for males and females

Interesting -	male	18	2.1667	1.24853	True	1.962	.172	201	28	.842
Boring	female	12	2.2500	.86603	False			216	27.919	.831
Нарру –	male	18	2.5000	.85749	True	7.132	.012	-2.109	28	.044
Unhappy	female	12	3.0833	.51493	False			-2.325	27.796	.028
Likable –	male	18	2.5000	1.09813	True	1.909	.178	892	28	.380
Dislikable	female	12	2.8333	.83485	False			943	27.412	.354
Exciting –	male	18	1.9444	1.21133	True	1.523	.227	142	28	.888
Dull	female	12	2.0000	.73855	False			156	27.858	.877
Good –	male	18	2.2778	.89479	True	.123	.729	185	28	.855
Bad	female	12	2.3333	.65134	False			197	27.710	.846
Complex –	male	18	3.0556	.93760	True	1.025	.320	-2.142	28	.041
Simple	female	12	3.7500	.75378	False			-2.239	26.886	.034
Rapid –	male	18	2.7778	.87820	True	.058	.812	656	28	.517
Slow	female	12	3.0000	.95346	False			645	22.338	.525
Active –	male	18	3.0556	.80237	True	.353	.557	413	28	.683
Passive	female	12	3.1667	.57735	False			441	27.772	.663
Showy –	male	18	3.8333	.70711	True	.211	.649	1.396	28	.174
Quiet	female	12	3.5000	.52223	False			1.483	27.622	.149
Sharp –	male	18	3.0556	.63914	True	2.407	.132	1.497	28	.146
Blunt	female	12	2.6667	.77850	False			1.437	20.437	.166

4.3 One-way Between-groups Analysis of Variance for Response Time

A one-way between-groups analysis of variance was conducted to explore the impact of response time on the evaluation of gaze interaction. Participants were divided into three groups according to which kind of response time they had experienced (Group 100ms; Group 300ms; Group 600ms). The result of this analysis was showed in Table 3.

According to Table 3, there was no significant difference in the score of any adjective pair for three groups. Thus in the experiment, we can't determine if the response time has effect on the evaluation of gaze interaction.

Table 3 ANOVA for Response Time

		ANOVA				
		Sum of Squares	df	Mean Square	F	Sig.
17: 1	Between Groups	2.600	2	1.300	1.340	.279
Kind –	Within Groups	26.200	27	.970		
Cruei	Total	28.800	29			
F 11	Between Groups	3.267	2	1.633	2.423	.108
Favorable –	Within Groups	18.200	27	.674		
Omavorable	Total	21.467	29			
Friendly – Unfriendly	Between Groups	1.867	2	.933	.735	.489
	Within Groups	34.300	27	1.270		
	Total	36.167	29			

	Between Groups	1.400	2	.700	.808	.456
Safe – Dangerous	Within Groups	23.400	27	.867		
Dangerous	Total	24.800	29			
	Between Groups	.467	2	.233	.700	.505
Pretty –	Within Groups	9.000	27	.333		
Ugiy	Total	9.467	29			
	Between Groups	.467	2	.233	.168	.846
Distinct –	Within Groups	37.400	27	1.385		
vague	Total	37.867	29			
	Between Groups	.600	2	.300	.393	.679
Accessible –	Within Groups	20.600	27	.763		
Inaccessible	Total	21.200	29			
	Between Groups	1.400	2	.700	1.734	.196
Altruistic –	Within Groups	10.900	27	.404		
Selfish	Total	12.300	29			
	Between Groups	1.800	2	.900	.900	.418
Humanlike –	Within Groups	27.000	27	1.000		
Mechanical	Total	28.800	29			
	Between Groups	1.400	2	.700	.974	.390
Full –	Within Groups	19.400	27	.719		
Empty	Total	20.800	29			
	Between Groups	1.400	2	.700	.566	.574
Interesting –	Within Groups	33.400	27	1.237		
Boring	Total	34.800	29			
	Between Groups	.867	2	.433	.416	.664
Likable –	Within Groups	28.100	27	1.041		
Dislikable	Total	28.967	29			
	Between Groups	1.867	2	.933	.866	.432
Exciting –	Within Groups	29.100	27	1.078		
Dull	Total	30.967	29			
	Between Groups	.200	2	.100	.149	.862
Good –	Within Groups	18.100	27	.670		
Bad	Total	18.300	29			
	Between Groups	1.067	2	.533	.643	.534
Rapid –	Within Groups	22.400	27	.830		
Slow	Total	23.467	29			
	Between Groups	.200	2	.100	.186	.831
Active –	Within Groups	14.500	27	.537		
Passive	Total	14.700	29			
	Between Groups	.600	2	.300	.692	.509
Showy –	Within Groups	11.700	27	.433		
Quiet	Total	12.300	29			
	Between Groups	.800	2	.400	.777	.470
Sharp –	Within Groups	13.900	27	.515		
Blunt	Total	14.700	29			
1	1			1		

4.4 Analysis for Awareness of Gaze Interaction

In the questionnaire of this experiment, except the evaluation part using SD method, I also appended one more question to ask if the participants were aware of the gaze interaction. In 30 participants, there were 4 participants who answered "Clearly Aware", 7 "Vaguely Aware", and 19 "Not Aware at all". The detail of the awareness condition in each group is showed in Table 4. In this section, we're going to analyze how the awareness affects the evaluation of gaze interaction.

Table 4 The distribution of awareness

	Clearly Aware	Vaguely Aware	Not Aware at all
	(people)	(people)	(people)
Group 100ms	3	0	7
Group 300ms	0	4	6
Group 600ms	1	3	6

A one-way between-groups analysis of variance was conducted to explore the impact of response time (100ms, 300ms, and 600ms) on the awareness of gaze interaction. The result of this analysis was showed in Table 5. According to Table 5, we can see there was no significant difference in the awareness for three groups. Thus in this experiment, we cannot determine if the response time has effect on the awareness of gaze interaction.

Table 5 ANOVA for response time on the awareness of gaze interaction

ANOVA											
	Sum of Squares	df	Mean Square	F	Sig.						
Between Groups	.200	2	.100	.176	.839						
Within Groups	15.300	27	.567								
Total	15.500	29									

Then we analyzed the relationship between awareness and evaluation of gaze interaction. In older to clear the condition of awareness and unawareness, we exclude the evaluation from the participants who answered "Vaguely Aware". The result of this analysis is showed in Table 6.

An Independent-samples t-test was conducted to compare the scores of adjective pairs for awareness and unawareness. There was statistically significant difference at the p < .05 level in the scores of adjective pair, "Humanlike – Mechanical", for awareness (M = 2.25, SD = 0.96) and female (M = 3.5, SD = 0.92), t (20) = -2.435, p = 0.024 (two-tailed).

	Group Statistics				Independent Samples Test					
	Aware	N	Mean	Std.	Equal variances	Levene' Equality o	s Test for of Variances	t-test	for Equa Means	lity of
		1,	i i i i i i i i i i i i i i i i i i i	Deviation	assumed	F	Sig.	t	df	Sig. (2-tailed)
Kind – Cruel	yes	4	2.2500	.95743	true	.106	.748	.338	20	.739
	no	18	2.0556	1.05564	False			.360	4.778	.734

Table 6 The result of independent-samples t-test for awareness and unawareness

Favorable –	yes	4	2.0000	.81650	True	.725	.405	946	20	.355
Unfavorable	no	18	2.4444	.85559	False			976	4.594	.378
Friendly –	yes	4	2.5000	1.00000	true	.551	.466	410	20	.686
Unfriendly	no	18	2.7778	1.26284	False			477	5.384	.652
Safe –	yes	4	1.5000	.57735	True	2.343	.142	582	20	.567
Dangerous	no	18	1.8333	1.09813	False			860	8.763	.413
Pretty –	yes	4	3.2500	.50000	True	.110	.743	1.578	20	.130
Ugly	no	18	2.7778	.54832	False			1.678	4.758	.157
Distinct –	yes	4	2.2500	.95743	True	.669	.423	-1.304	20	.207
Vague	no	18	3.1111	1.23140	False			-1.538	5.480	.180
Accessible –	yes	4	2.0000	.81650	True	.952	.341	-1.479	20	.155
Inaccessible	no	18	2.7222	.89479	False			-1.572	4.755	.180
Altruistic –	yes	4	2.2500	.95743	True	2.940	.102	-1.523	20	.143
Selfish	no	18	2.7778	.54832	False			-1.064	3.450	.356
Humanlike –	yes	4	2.2500	.95743	True	.012	.913	-2.435	20	.024
Mechanical	no	18	3.5000	.92355	False			-2.377	4.336	.071
Full –	yes	4	2.7500	.50000	True	1.908	.182	-1.333	20	.197
Empty	no	18	3.3889	.91644	False			-1.934	8.332	.088
Interesting -	yes	4	1.7500	.95743	True	.394	.537	-1.298	20	.209
Boring	no	18	2.5556	1.14903	False			-1.465	5.135	.201
Likable –	yes	4	2.2500	.50000	True	.724	.405	-1.076	20	.295
Dislikable	no	18	2.8333	1.04319	False			-1.664	9.965	.127
Exciting –	yes	4	1.7500	.95743	True	.045	.834	567	20	.577
Dull	no	18	2.1111	1.18266	False			652	5.272	.542
Good –	yes	4	2.0000	.81650	True	.331	.572	-1.062	20	.301
Bad	no	18	2.5000	.85749	False			-1.098	4.602	.326
Rapid –	yes	4	2.5000	1.00000	True	.067	.798	981	20	.338
Slow	no	18	3.0000	.90749	False			919	4.174	.408
Active –	yes	4	3.0000	0.00000	True	4.722	.042	416	20	.682
Passive	no	18	3.1667	.78591	False			900	17.000	.381
Showy –	yes	4	3.5000	.57735	True	.286	.599	707	20	.488
Quiet	no	18	3.7778	.73208	False			826	5.405	.444
Sharp –	yes	4	3.5000	.57735	True	.112	.742	1.595	20	.126
Blunt	no	18	2.9444	.63914	False			1.706	4.794	.151

5. Discussion

Based on the results, we have few points to discuss:

• Response Time VS. Evaluation of Gaze Interaction VS. Awareness

According to the result of one-way between-groups analysis of variance for response time, there was no significant difference in the score of any adjective pair for three different response time groups. In assumption, we supposed that the gaze interaction with short response time would have better evaluation than the long one. However, it cannot be verified in this experiment. One of the reason caused the result is considered to be the unawareness to gaze interaction. More than half of participants do not aware the gaze tracking during interaction. And from the result of analysis for awareness of gaze interaction, it does not show the better ability to be aware in short response time. Therefore, the participants might not notice the delay of response. And since the delay of response is not noticed, the evaluation of gaze interaction would not show differences from different response time.

◆ The difference between the evaluation of awareness and unawareness

From Table 6, we have known that there was statistically significant difference in adjective pair, "Humanlike – Mechanical", for awareness and unawareness. And also the evaluation of awareness has small mean score that means when gaze interaction being noticed the gaze interaction has more humanlike impression. This is a reasonable result since the idea of gaze interaction with machine is from the characteristic "eye contact" of people, and if participants did not notice the gaze interaction, the gaze interaction they have are unconscious thus they have less humanlike impression. In this experiment, I did not use humanoid design, however, having the interact-ability with human characteristic does give people the impression of humanlike.

• Effect of using the developed interface to participants' impression

At the end of this experiment, many participants were surprised when they were told that the video they watched was actually not a video but a gaze interaction interface. We wanted to make the participants have more natural experience of gaze interaction by concealing gaze interaction in the prior explanation of experiment. However, participants did not have experience of interacting with machine by gaze, it was hard for them to associate this experiment to gaze interaction.

From the results of this experiment, the availability of applying this human-machine interface based on the Gaze Catching System is not clearly verified. Since the most unawareness, the evaluations from participants are not all in a conscious interacting situation. But we want to use this developed system to construct a two-way interaction between human and machine, the current interface is not able to reach the target. It needs to improve the design of the interface based on the Gaze Catching System.

Problems of developed interface

The low accuracy of the gaze tracking program might be one of the reasons of the unawareness. The TrackEye program has the advantage that it only needs simple equipment which makes it easy to be used. The source code of Trackeye is open that allow other users to add another function they want base on the eye-tracking system. But accompany with the advantage, the disadvantage of low accuracy is unavoidable. Improve the arrangement of experiment and the accuracy of program would be the lesson before next research.

6. Conclusion

From the experiment results, the most unawareness of participants made the availability of applying the human-machine interface based on the Gaze Catching System is not clearly verified. To use the developed system to construct a two-way interaction between human and machine, it needs to improve the design of the interface.

However, the efficiency of the interfaces was examined by subjective kansei evaluation methods. The factor of response time was not seen to have effect on gaze interaction, while Awareness of gaze interaction would bring more humanlike impression. This research was considered to be the indispensable basic research for constructing a new human-machine interface based on the Gaze Catching System in the future.

7. Reference

- Hennessey, C., Noureddin, B., & Lawrence, P. (2006). A Single Camera Eye-Gaze Tracking System with Free Head Motion. In Proceedings of ETRA: Eye Tracking Research and Applications Symposium. San Diego, California, USA: ACM Press. pp. 87-94.
- [2] Snider, J. G., et al. Semantic differential technique, Aldine Publishing, 1969.
- [3] Zafer Savas (2007). TrackEye : Real-Time Tracking Of Human Eyes Using a Webcam. Retrieved December 1, 2011 from THE CODE PROJECT database on the World Wide Web: http://www.codeproject.com/KB/cpp/TrackEye.aspx
- [4] Zafer Savas, Real-Time Detection and Tracking of Human Eyes in Video Sequences (2005), Master Thesis, Middle East Technical University.
- [5] Miller, R. B. (1968). *Response time in man-computer conversational transactions*. Proceedings of Fall Joint Computer Conference.
- [6] Sears, A., Jacko, J., & Borella, M. (1997). Internet Delay Effects: How Users Perceive Quality, Organization, and Ease of Use of Information, Proceedings of the CHI 97: Human Factors in Computing, 353-354, March 1997, Atlanta, Georgia, ACM Press, Preece, J., and Rosson, M.B., editors